A categorification of the Jones polynomial

نویسندگان

  • Igor Frenkel
  • Mikhail Khovanov
چکیده

2 Preliminaries 5 2.1 The ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The algebra A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Algebra A and (1+1)-dimensional cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Kauffman bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Khovanov’s Categorification of the Jones Polynomial

The working mathematician fears complicated words but loves pictures and diagrams. We thus give a no-fancy-anything picture rich glimpse into Khovanov’s novel construction of “the categorification of the Jones polynomial”. For the same low cost we also provide some computations, including one that shows that Khovanov’s invariant is strictly stronger than the Jones polynomial and including a tab...

متن کامل

Categorification of the Jones-wenzl Projectors

The Jones-Wenzl projectors pn play a central role in quantum topology, underlying the construction of SU(2) topological quantum field theories and quantum spin networks. We construct chain complexes Pn , whose graded Euler characteristic is the “classical” projector pn in the Temperley-Lieb algebra. We show that the Pn are idempotents and uniquely defined up to homotopy. Our results fit within ...

متن کامل

MATRIX FACTORIZATIONS AND DOUBLE LINE IN sln QUANTUM LINK INVARIANT

L. Kauffman introduced a graphical link invariant which is the normalized Jones polynomial [4][5]. It is well-known that the polynomial is derived from the fundamental representation of the quantum group Uq(sl2). Further, G. Kuperberg constructed a graphical link invariant associated with the fundamental representation of the quantum group Uq(sl3) [10]. H. Murakami, T. Ohtsuki and S. Yamada int...

متن کامل

Categorification of the Dichromatic Polynomial for Graphs

For each graph and each positive integer n, we define a chain complex whose graded Euler characteristic is equal to an appropriate nspecialization of the dichromatic polynomial. This also gives a categorification of n-specializations of the Tutte polynomial of graphs. Also, for each graph and integer n ≤ 2, we define the different one variable n-specializations of the dichromatic polynomials, a...

متن کامل

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE délivré par l’Université Toulouse III – Paul Sabatier en MATHÉMATIQUES PURES

A categorification of a polynomial link invariant is an homological invariant which contains the polynomial one as its graded Euler characteristic. This field has been initiated by Khovanov categorification of the Jones polynomial. Later, P. Ozsváth and Z. Szabó gave a categorification of Alexander polynomial. Besides their increased abilities for distinguishing knots, this new invariants seem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999